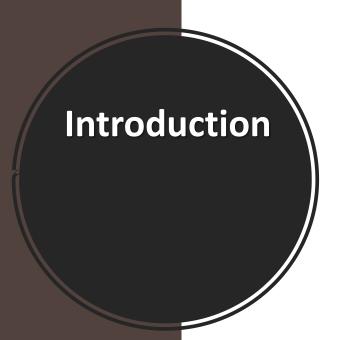
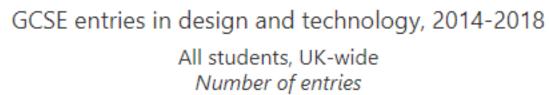

Irving-Bell, D, Wooff, David and McLain, M (2019) Re-designing Design and Technology Education: A living literature review of stakeholder perspectives. In: PATT37: Developing a Knowledge Economy Through Technology and Engineering Education., 3rd - 6th June 2019, L'Universita ta Malta, Msida Campus, MALTA.

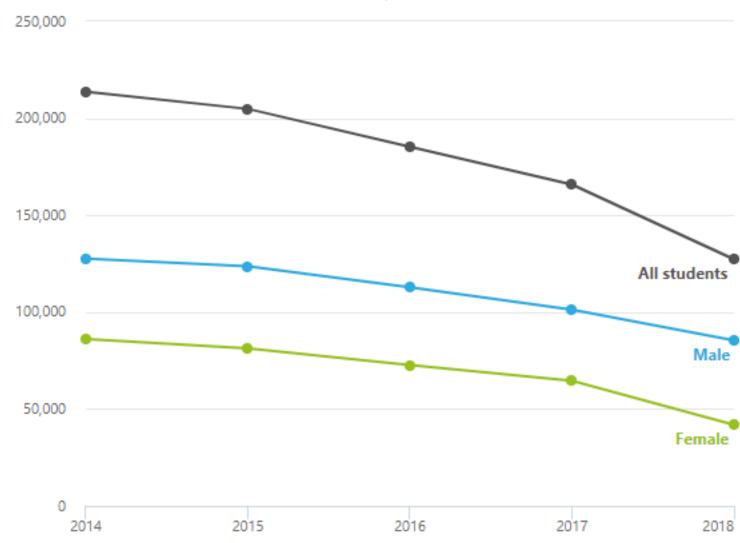
Downloaded from: http://sure.sunderland.ac.uk/id/eprint/10841/

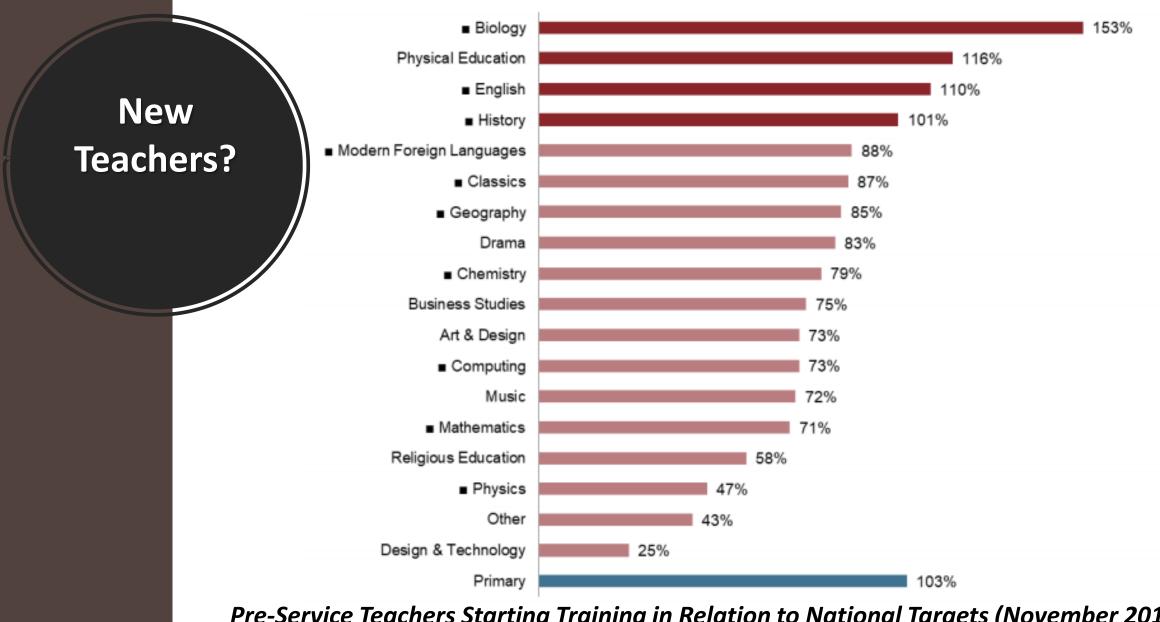

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively

contact sure@sunderland.ac.uk.




University of Malta 3rd-6th June 2019



- Within the UK design and technology is in serious decline
- There is limited solid research base from which to build
- This paper could be viewed as call to action by the UK design and technology community

Uptake in the Subject

Pre-Service Teachers Starting Training in Relation to National Targets (November 2018)

			2017/18r			2018/19p	
	Subject	Recruited	Target	Contribution to target	Recruited	Target	Contribution to target
	■ English	2,125	2,426	88%	2,815	2,558	110%
New	■ Mathematics	2,385	3,102	77%	2,195	3,116	71%
	■ Biology	1,005	1,188	85%	1,815	1,188	153%
Teachers?	■ Chemistry	865	1,053	82%	835	1,053	79%
	■ Physics	695	1,055	66%	575	1,219	47%
	■ Computing	450	723	62%	530	723	73%
	■ Classics	55	69	83%	60	69	87%
	■ MFL	1,375	1,514	91%	1,405	1,600	88%
	■ Geography	1,190	1,531	78%	1,300	1,531	85%
	■ History	1,155	1,160	100%	1,190	1,180	101%
	Art	420	577	73%	475	646	73%
	Business Studies	170	218	78%	180	241	75%
	Design & Technology ¹²	300	917	33%	295	1,167	25%
	Drama	255	345	74%	205	357	83%
	Music	295	393	75%	295	409	72%
	Other	395	812	49%	385	896	43%
	Physical Education	1,105	999	110%	1,250	1,078	116%
	Religious Education	400	643	62%	375	643	58%
	Total EBacc	11,305	13,821	82%	12,725	14,237	89%
	Total Secondary	14,645	18,726	78%	16,280	19,674	83%
	Primary	12,500	12,121	103%	12,975	12,552	103%
	Total	27,145	30,847	88%	29,255	32,226	91%

Do We Help Ourselves? STEM vs <u>Design</u> and Technology

Maker Movement = Computer Science?

Old(er) Technology vs New Technology

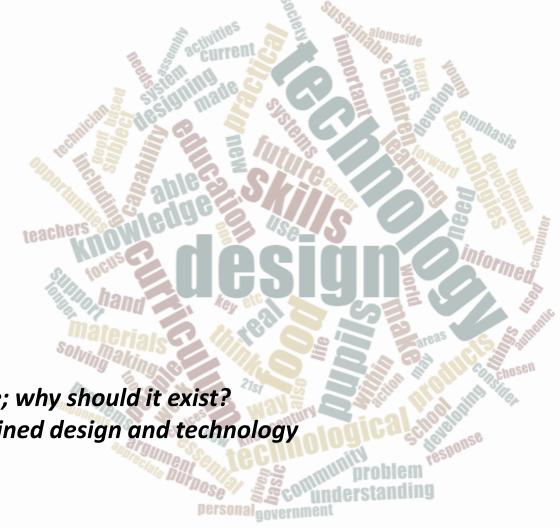
Assessing Products rather than knowledge or skills

Outsider Perceptions

Woodwork / Metalwork / Technical Drawing / Cooking / Sewing

Low Quality Outcomes = No Success = No Learning

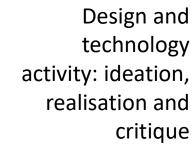
Lack of "Academic" Status

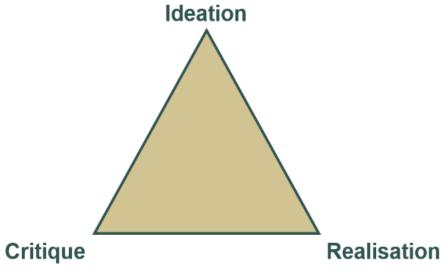

Expensive

Often for those considered to be less academically able

How to Reverse This?

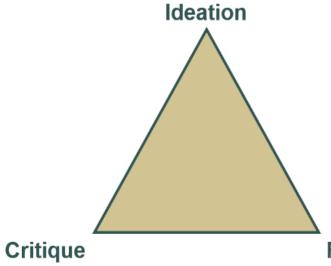
Albert Einstein is widely credited with saying, "The definition of insanity is doing the same thing over and over again, but expecting different results".


What is design and technology fundamental purpose; why should it exist? and irrespective any barriers, what should a re-imagined design and technology curriculum 'look like'?


- UK based study drawing upon the perspectives of UK Design and Technology 'royalty'
- Informed by grounded theory (to enable concurrent data collection with analysis informing subsequent phases)
- A living document, this is the start of the conversation

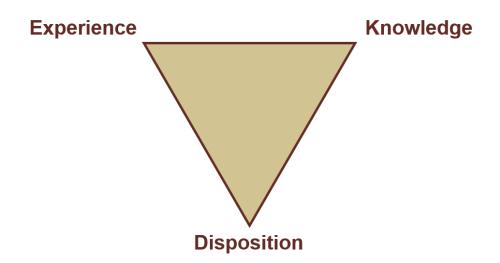
Participants and Approach

Analysis and Presentation of Data



Analysis and Presentation of Data

Design and technology activity: ideation, realisation and critique



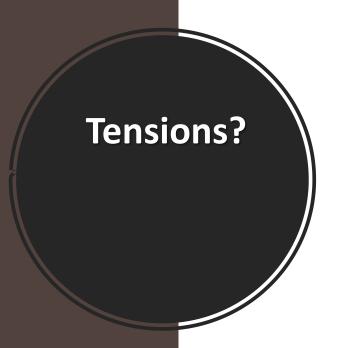
Design and technology activity (ideating, realising and critiquing)

Disentangle the data in order to bring to the fore common insights and understandings:

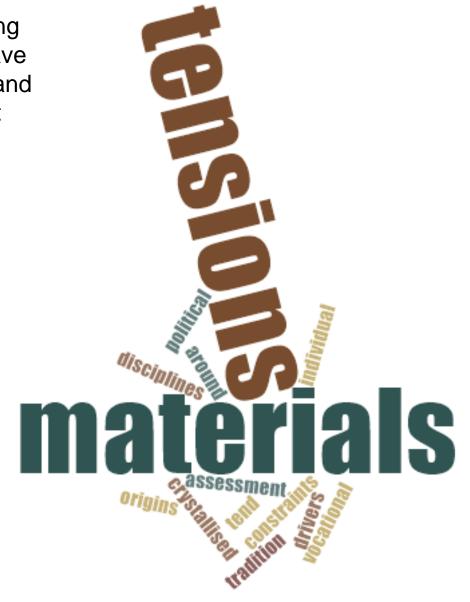
- Curriculum intentions (knowledge, experience and learner dispositions)
- Tensions (materials and the STEM agenda)

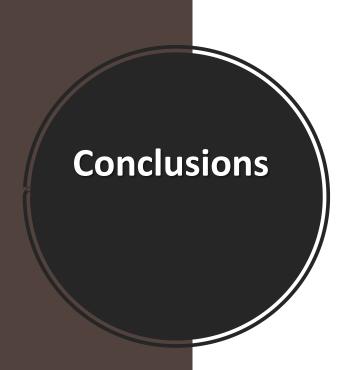
Design and technology curriculum intentions: experience, knowledge and disposition

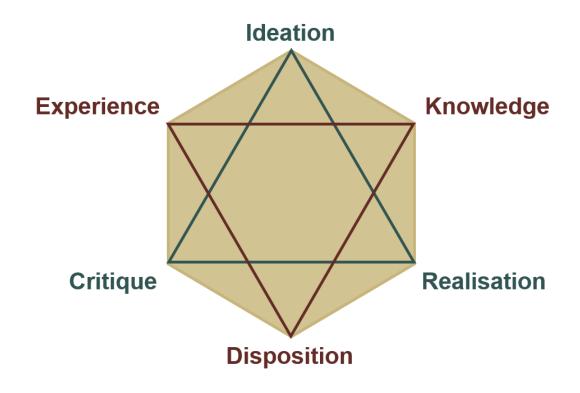
Curriculum intentions and 'non-negotiable' common ground



Spanning all participant responses, a series of desirable **dispositions** for learners emerged. Participants felt strongly that the subject should seek to develop attributes including team building, communication (including the extrapolation of ideas) and collaboration. Resilience, and the development of an ability to take informed risks and engage in 'proud failures' was also cited by participants.

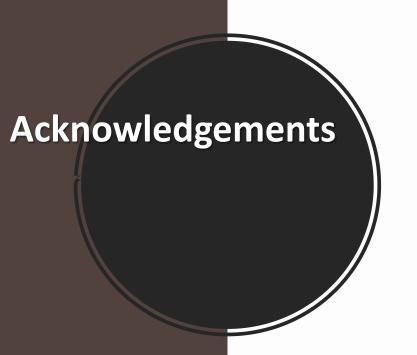

The third category, **knowledge**, extends beyond the boundaries of the subject and relates to participant perceptions of a broader body of knowledge. Dimensions of knowledge considered were, by the learner in relation to political and global agendas, knowledge for action and situated knowledge, within the context of other subject disciplines.


A second emergent category, **experience**, relates to what learners 'do' (i.e. what they experience) within the subject, what is important to know. Participant responses include reference to authentic approaches to problem solving, context and an awareness of human needs and wants within a technological society.



A number of commentators, including the National subject association, have discussed the relevance of design and technology as a subject for the 21st century within the context of STEM.

However,
irrespective of the
participants
background or
material area
during analysis we
were surprised that
in discourse
responses made
little or limited
reference to STEM



Challenging current and historic understandings of design and technology: A working model

Rather than seeking to reclaim, re-name or re-frame, throughout we have sought to avoid a focus on repairing the subject, which we believe would potentially result in a make do and mend approach to the development of a revised curriculum.

In the spirit of the living document approach which has been adopted for this work we welcome contributions from the community, and invite the open critique, adaption and development of this paper. In turn drawing from those new, additional perspectives it is our intention to continue to maintain communication, and to keep the conversation growing.

We would like to thank all of those who responded to our call for their perspectives on the future of design and technology education. Without the community's full engagement this starting point for further discourse would not be possible, hence the support and encouragement received from the community has been very much appreciated.

PATT37 University of Malta 3rd-6th June 2019

Thank you for listening

Questions?

Dr Dawne Irving-Bell, <u>belld@edgehill.ac.uk</u>

Matt McLain, <u>M.N.McLain@ljmu.ac.uk</u>

David Wooff, <u>David.Wooff@sunderland.ac.uk</u>

@belld17

@The DT Geek

@DesTech2013

